Chapter 4

Life Cycle

Chapter 4

Life Cycle

1
A Structured Approach

1.1
The Documentation Cycle

1.1.1
I tried to tackle the project in a methodological and structured way. My main influences are Brockmann [5], Price and Korman [34], Weiss [44], and specifically for online documentation, Horton [15]. Essentially, all four authors identify three main phases:

SYMBOL 183 \f "Symbol" \s 10 \h
Analysis - ie, identify target users, their tasks, and what the documentation is trying to achieve

SYMBOL 183 \f "Symbol" \s 10 \h
Design - ie, apply the analysis, seek an appropriate medium and format, and produce prototypes

SYMBOL 183 \f "Symbol" \s 10 \h
Build, or draft the documentation

See Appendix C for a more detailed summary.

1.1.2
This framework is clearly aimed at producing documentation from scratch. For my placement, however, I was mainly amending existing topics, or adding additional topics to a pre-existing design. As such, I did not go through all the phases of this typical documentation life cycle. Despite this, I still found it useful to analyse the information needs, and specify exactly what the design constraints were, for as Nichols points out, "Consistency is the key design principle for all online information" [29, p432].

1.2
The Overall Project Cycle

Documentation is dependent on the software, and so must fit in with an overall project schedule. Appendix D illustrates a typical software development life cycle and how the Chaplin project (including the writing) maps onto it, while Appendix E shows the project milestones and the user information team's (UIT) specific tasks.

1.3
Project Co-ordination

Internal communication is primarily via a Lotus Notes database. Discussion documents, plans, and specifications are posted to this database, and all members of the Development team, including UIT, can post comments. Specifications can go through many iterations until they are formally approved.

2
Planning, Analysis, and Design

2.1
A "Strategic" Specification

The Chaplin project was initiated in March 1995. As such, most of the planning work had already been done, and I was presented with a series of sub-projects that formed the substance of my placement activities (see Appendix E2). This limited the scope of any specification. My role was perhaps analogous to a contractor employed to do a specified job. Hence, my first task was to demonstrate that I could fit-in with the existing team. Thus, I began by producing a general, or "strategic" specification (included as Appendix F). This set out:

SYMBOL 183 \f "Symbol" \s 10 \h
the purpose of my documentation in relation to the objectives of the new release and to the target users

SYMBOL 183 \f "Symbol" \s 10 \h
the general design of the documentation in relation to existing design practices

SYMBOL 183 \f "Symbol" \s 10 \h
the milestones in relation to the overall project implementation plan

In some respects, this specification functioned like a contractor's initial proposal, which is to see the situation

'through the client's eyes' [which, in this case, is LBMS] and then communicate to the client - first that the client's needs are understood and then that the contractor can satisfy them [38, pCC-23].

2.2
Topic-Level Specifications

2.2.1
The next stage was to begin gathering information about the software and the proposed changes for this release. This was a difficult stage: the software is complex and supports specialist tasks, the design specifications were continually being revised, and I only saw one "software development kit". I tackled these problems by drawing up highly detailed topic-specific specifications, containing the following types of information (in this, I was influenced by Horton [15, p113]):

SYMBOL 183 \f "Symbol" \s 10 \h
coding information necessary for the Windows Help Compiler (ie, the context string, title, keywords, software links, and browse sequence - what Horton describes as "meta-info")

SYMBOL 183 \f "Symbol" \s 10 \h
content (ie, tasks supported or features described)

SYMBOL 183 \f "Symbol" \s 10 \h
"see also" hyperlink cross-references

SYMBOL 183 \f "Symbol" \s 10 \h
illustrations

SYMBOL 183 \f "Symbol" \s 10 \h
cross-references to external specifications

SYMBOL 183 \f "Symbol" \s 10 \h
purpose of the topic

2.2.2
My aim was to avoid what Brockmann calls "decision overload" at the actual drafting stage [5, p87; p187]. This is a particular problem with online help due to the additional "meta-information" levels that drafting entails. As the project developed, I replaced these highly detailed topic-specific sheets with "update" summary sheets, which recorded the current state of each topic. (I include these working papers in folder 3 of the supporting material.) Though the process seemed messy, these tools I created for myself were a way of systemizing the drafting process. Weiss sums up the approach I was trying to implement:

There are two broadly different ways to write a document. The first is to compose it, crafting the sentences and paragraphs while they are being written, as would a writer working on a script. The second is to engineer it, preparing a series of increasingly finer specifications until, at last, a document 'drops out' [44, p40].

2.3
Prototyping

This is an integral part of the specification process:

prototyping should best illustrate the layout/format/design, writing style, tone, and reference aids to be used later in the production of the full scale manual

which is then used for testing the document's usability [5, p178]. The focus of these comments is clearly on producing new documentation, but, as said already, my main focus was amending topics. I did produce practice help files in the first week of the placement, which, together with my strategic specification, indicated that I had taken on board "the way things are done" in LBMS.

2.4
Proportion of My Time Spent on Planning

Price and Korman suggests that 20-25% of the project time should be spent on the specifications; Brockmann suggests 25-30%. These are quibbles - whatever the exact time, as the comment by Weiss in section 2.2 indicates, detailed planning is crucial. However, I spent perhaps an excessive amount of time on the various levels of the specification process - around 45% of the total project time (see Appendix G; however, I spent only around 10% of the time on the strategic specification). The main reason for this is the problems I had understanding both the software and the tasks it supports, as well as having to work from specifications that presumed much prior knowledge of the software's organization and behaviour. Thus, a steep learning curve, which demanded an extensive time investment.

3
Building the Topics: Drafting and Editing

The actual drafting was an iterative process of "specify - draft - edit - revise". For editing, Brockmann outlines a "levels of edit" approach [5, p239]. Although I did not follow exactly these recommendations, I did edit systematically rather than intuitively, as follows:

1.
Comprehensiveness: have I included all the relevant information?

2.
Design: have I formatted the source document (ie, a Word file) correctly?

3.
House style: have I followed LBMS conventions, including those that break South Bank house style

4.
Accuracy: have I checked the spelling

compile the source document

5.
Integrity 1: do the links work?

6.
Integrity 2: have changes to one topic cascaded through all other "dependent" topics such as menus

7.
Integrity 3: Re-check house style and accuracy now that it can be seen in its online format

4
Testing

4.1
Expert Review

4.1.1
Shriver divides evaluation techniques into three main types: text-based, expert review, and user-centred. Text-based review is basically a systematic "levels of edit" [41, p246] test. Expert review includes review by peers, management, and technical experts, while user-centred is about getting the user's point of view through field-testing. She concludes by saying that it is the latter approach that is the most effective.

4.1.2
The LBMS approach includes only with the first two techniques. Each topic is reviewed by:

1.
a UIT colleague

2.
a knowledgeable member of the software development team responsible for coding the related software

3.
the relevant Product Manager

[24]

4.1.3
My documentation was subject to all these types of review (feedback tended to be hand-written annotations on the drafts themselves). As Shriver points out, however, expert review is limited in that reviewers may be "too close" to the subject matter and miss crucial usability flaws [41, p245]. User-centred testing is the best strategy - ie, field-testing.

4.2
Usability Testing

4.2.1
There is no usability testing. This raises the real possibility of whether full and effective use is being made of the documentation out in the real world. A current worker did some informal questioning of users at a conference several years ago, but no records now exist, and he was non-committal about the findings.

4.2.2
Corgan and Walters point out that usability testing can, despite what seems like an initial high cost, have a sound commercial basis, namely in reducing customer calls [9, p113]. However, as I suggested in chapter 3, even with the sale of the consultancy arm of the company, LBMS seem to consider human support as their main user support strategy, and this perhaps explains why there is no will in the company to assess whether their documentation is being used effectively.

5
Milestones

5.1
Appendixes E1, E2, and F show how I planned my placement according to the existing Chaplin Implementation Plan. The first problem was that the first software development kit, which was due on 28 July, did not appear till August 16. This meant I had to work from design specifications, which was frustrating due to the amount of presumed prior knowledge of the system in these specifications. As such, I did not work in the discrete phases specified in the strategic specification: there was no set of topic level specifications ready by August 4, and there was no set of final drafts ready by August 28.

5.2
However, as I have argued throughout this chapter, I tried to maintain a systematic and structured approach to these more fluid conditions, and I was able to deliver a set of topics, according to the tasks allocated to me, for technical review by both developers and the project manager by Monday 11 September. In short, I had to adapt to the continually shifting situation. But, as Price and Korman observe, schedules are "often our greatest work of fiction" [34, p103], although this does not mean they are useless. The initial strategic specification provided an overall framework that set out the parameters of my placement - it was simply a matter of changing the detail:

...reality intrudes. Factors change - product development slips, the team adopts a new approach to the user interface, or the manuals get redesigned - and you begin the continuing process of revising and updating the schedule to reflect the current status [34, p103].

6
Summary

SYMBOL 183 \f "Symbol" \s 10 \h
I tried to employ a structured and systematic approach to planning, drafting, and editing

SYMBOL 183 \f "Symbol" \s 10 \h
My main objective was to develop topics in a style consistent with existing designs

SYMBOL 183 \f "Symbol" \s 10 \h
I spent about 45% of the total project time on planning - perhaps more than I intended, although I do consider detailed planning to be crucial

SYMBOL 183 \f "Symbol" \s 10 \h
My documentation was reviewed by other members of the writing team, developers, and the project manager, but the company has no policy of usability testing

SYMBOL 183 \f "Symbol" \s 10 \h
I felt that I kept the project on target, but the life cycle was not as neat as originally planned: objectives changed, tasks were reallocated, and software development kits failed to materialize on time

21
26

