Chapter 2

Evaluation of the Interface

Chapter 2

Evaluation of the Interface

1
Interaction Styles

1.1
Menu and Selection

1.1.1
Purpose, position, and format

Users interact with SE/SB through three main facilities: forms, tools, and diagrams. Each of these facilities has a permanent, horizontal menu bar, with drop-down sub-menus. Menus removes a significant obstacle to use. They provide a permanent reminder of the system's functionality, which reduces the burden on memory.

1.1.2
Sequencing

Meaningful sequences help the user communicate more easily with the computer. They allow users to map their conceptual goals onto the available options - what Preece calls finding an "entity match" [33, p265]. Figure 2.1 shows (from the back) the data models form, the pseudocode window (a tool), and the data models diagram.

Figure 2.1

 Menu bars and (in the foreground) the data models diagram

As you can see, the sequences mainly follow the standard Windows order - ie, File, Edit... Help - except for the diagram, which intersperses File and Edit with Icon. The thinking behind this, it seems, is that users cannot edit something until they have inserted an icon (ie, an entity box, or a relationship line, etc). However, I feel that this is a mistake. The File-Edit sequence is now so dominant (with Windows as well as Apple applications) that I was taken aback when I first saw this, and it undermines confidence as you wonder what else might be different from the accepted standard.

Each menu bar contains different items. Although this may appear inconsistent, each menu bar is appropriate to the functionality that particular facility offers. It is analogous to the way Excel and Word contain menu options appropriate to spreadsheet and wordprocessing functionality respectively.

1.1.3
Grouping

A large number of items on the drop-down menu (as in figure 2.2) inhibits scanning. To overcome this, items are grouped together. Johnson points out that if menus are divided into semantically related categories, then each item "primes recognition" of subsequent items, which helps reading, and access [18, pp32-4].

Figure 2.2

Drop-down menu and third-level "walking menu"

Those items followed by an ellipse open a dialog box where users can make further selections, usually to create or maintain the properties of the database objects. Those followed by an arrowhead open a further "walking menu", where the options generally open "tools", where users can perform more complex manipulations to their designs. Thus, the grouping is based on functionality rather than semantic coherence - although there is an overlap. It also helps establish a conceptual model of the system's organization and behaviour.

1.1.4
Breadth and depth

Shneiderman advocates breadth rather than depth in menu design [40, p110]. As you can see from figures 2.1 and 2.2, the main menu bar on the forms is short, with scope for additional items.

Figure 2.3 (below) shows a feature of this new release - tabbed dialog areas. Options that were on the drop-down menus are now on these tabs, which means that users have more options available at the first level of interaction. (Note that these dialog areas are accessible at the same time as the main menu. They are not, as is typical, third level menus.)

Figure 2.3

The Data Models form tabbed dialog area and menu depth

Figure 2.3 also shows how there are problems with depth and, thus, navigation. The small windows to the left of the screen are two other versions of the data models form and two versions of the entities form. I simply opened from the other - a procedure you can repeat ad infinitum (subject to the machine's memory). It is like going down an ever-deepening spiral. The reason for this is that the tool is designed for use in multi-user project teams where different users may need to access the same facilities through different routes.

These quirks apart, depth is also a problem when accessing some commonly used features. To open the trigger processing window, for example, users must navigate through five screens. Appendix B illustrates how.

1.1.5
Selection mechanisms

Both pointing and keyboard selection are possible - see direct manipulation and command entry respectively.

1.2
Form Fillin

1.2.1
This style is the main method of inputting data. The tabbed dialog areas (see figure 2.3) combine fill-in fields, check-boxes, and pull-down list boxes (effectively, another type of menu, but one where users can also type-in directly the option if they can remember it).

1.2.2
Navigation is by either pointing and clicking at the boxes and fields, or through the tab key. However, unlike the dialog boxes on, for example, Word for Windows, users cannot select the fields and boxes by mnemonic keyboard commands. This forces users to use the mouse or press the tab key repeatedly if they want to access an option later in the order, which can be disruptive if you are a user with a preference for (faster) keyboard interaction.

1.2.3
Shneiderman talks of the importance of making these multi-choice dialogue boxes visually appealing [40, p134]. In figure 2.3, there is a uniform distribution of fields, an absence of crowding, and, consequently, "a feeling of order and comprehensibility" [40, p134]. Also concurring with Shneiderman's guidelines is the use of a meaningful title for each dialog box.

1.2.4
The tabs are ordered according to frequency of use. The fields within the tabbed area are ordered by importance.

 1.2.5
Fields where users must type-in values do not have default values - it is impossible to predict what should go there (eg, name and reference). However, the list boxes do have a default value based on the most common or "neutral" value. This varies according to the function of the form. For example, when creating a new data model, the data models form has "logical data model" in the class box because this is what designers must design first, while the referential constraints boxes on the relationships form have "No action" because it is up to designers to decide what action they want - if any at all - according to their overall referential integrity policy.

1.2.6
Finally, Shneiderman suggest that fill-in fields should have on-screen instructions. The appropriate help topic is immediately accessible by pressing f1 or selecting from the Help menu (which is available, remember, at the same time as users are working on the dialog area).

1.3
Command Entry

1.3.1
Mnemonic keyboard combinations and "typeahead"

Users can select menu options by key presses that have some mnemonic quality - eg, Alt+E, for edit. This is a useful Windows facility that allows users to use the mouse or the keyboard depending on preference. However, as I pointed out in section 1.2 above, you cannot navigate around the dialog areas using this method. This prevents the use of typeahead command strings, which expert users often prefer [40, p119].

1.3.2
Short-cut commands

This is fast and often preferred by expert users. It requires system knowledge obtained from the documentation. The SE online help provides details of these commands, but the SB help does not. Mainly, they follow standard Windows conventions - eg, f1 for help, Ctrl+X to cut, and so on. No operations, however, depend purely on command entry.

1.4
Direct Manipulation

1.4.1
Standard Windows facilities

In its broadest sense, direct manipulation (DM) covers use of the mouse to select menus and graphical buttons [40, p185]. Figure 2.1 (page 4) illustrates the system's graphical toolbar that, like the menu bar, is permanently present on all tools, forms, and diagrams. These tool bars combine both elements of selection and DM, and because using them usually depends on system knowledge, expert users tend to prefer them. Other DM features scroll bars and resizeable windows.

1.4.2
Diagrams

Figure 2.1 (page 4) shows the data models diagram (in the foreground), which allows users to construct their data model directly on the screen, repositioning entities as they see fit. This method of "select and drag" is a "more direct" method, which can have the effect of diminishing the sense of the computer and allowing the user to focus more on the task [40, p202]. This, in turn, can increase productivity. As Johnson argues, the role of effective, task-oriented computer design is not just to support, but to improve task performance [18, page xiv] and this is a major selling point for CASE tools in general and SE/SB in particular. Shneiderman's description of computer-aided design packages, which have some similarities with CASE tools, is a key component of SE/SB's market success:

The pleasures in using these systems stem from the capacity to manipulate the object of interest directly and to generate multiple alternatives rapidly [40, p196].

2
Messages

2.1
Dialogue and Feedback

Human computer interaction (HCI) is fundamentally about dialogue [18, p1]. Section 1 discussed how the user communicates with the computer; this section discusses how the computer communicates with the user.

2.2
Status Messages

The status bar at the bottom left of each window (see, eg, figure 2.3, page 6) provides brief summaries of what the interface objects, such as menus and commands, do. It also provides information such the database name and reference.
The information is useful, but not essential to carrying out a task. As such, it does not take up much valuable screen space, while the font is not prominent and does not attract the attention.

2.3
Progress Messages

2.3.1
While a user is waiting for an operation to complete, such as opening a window, the software presents the Windows graphical egg-timer, which tells the user he or she must pause. However, there is no indication of how long the operation will take.

2.3.2
For Shneiderman feedback on any user operation is imperative. It gives

operators the satisfaction of accomplishment, a sense of relief, the signal to drop contingency plans and options from their minds, and an indication that the way is clear to prepare for the next group of actions [40, p73].

However, in the LBMS software, not all user-operations receive feedback. For example, when I created a test trigger object, I did not know I had successfully done it until I opened the data model again and found it there in the list of trigger objects.

2.3.3
Where the system takes a substantial amount of time to complete an operation (ie, measured in minutes rather than seconds), feedback is presented more prominently. Figure 2.4 tells the user what is happening while generating trigger code. The actual errors and warning messages are written to a text-file error log (these could be substantial, and so it is untenable to use a simple message box for these purposes).

Figure 2.4

Progress message for trigger code creation

2.4
Error and Warning Messages

2.4.1
Figure 2.5 (page 10) shows three similar types of message.

Figure 2.5

Error and warning messages

Figure 2.5a - Error message

Figure 2.5b - Warning message

Figure 2.5c - Warning message that aims to prevent errors

The main points to notice are that they are:

SYMBOL 183 \f "Symbol" \s 10 \h prominent: the box overlays the work area and has boldly defined borders

SYMBOL 183 \f "Symbol" \s 10 \h unignorable: the user must click on one of the buttons to continue

2.4.2
For error messages, Shneiderman suggests a non-accusatory style with the system taking the blame for the error [40, p307]. Figure 2.5a, mainly fulfils this, although no blame is apportioned in the message. An alternative could be: "Systems Engineer cannot complete the operation because the user cancelled the operation", but this strikes me as too verbose and potentially patronizing for the expert user who uses this system.

2.4.3
Figure 2.5b simply states why nothing has happened. It is in some ways a cross between an error message and a progress message. Figure 2.5c aims to prevent errors. These messages include a prominent question mark and it forces users to make a conscious decision to continue, which hopefully alerts them to an error they maybe about to make.

3
Help

My placement comprised producing online help files for SE/SB. Therefore, I discuss design issues in chapter 5, and, more specifically, how the help system supports user-tasks in chapter 7.

4
Screen Design

4.1
Layout and Content

4.1.1
I discussed screen layout features such as menus and dialog areas in section 1; paragraph

1.2.3 specifically discusses "visual appeal".

4.1.2
On a more general level, the idea of "forms", "tools", and "diagrams" as means of interaction is an appropriate metaphor that makes good use of a typical user's prior knowledge and ways of working. Avison and Fitzgerald, for example, in describing systems analysis and design techniques, point out that data models are

normally supported by documentation tools, to hold information on entities, attributes, and relationships. It is possible to obtain forms on which to specify all the elements of the data analysis process. It is also usual to document events and operations [1, pp76-7, my emphasis].

SE/SB does all this, and more. The 3D look and feel of these tabbed dialog areas suggest a "stack" of forms and documentation that is essential to designing a database.

4.2
Coding

The system, using the Microsoft Windows shell, uses many of the standard features, eg:

SYMBOL 183 \f "Symbol" \s 10 \h
audible alarm - eg, when users type incorrect keyboard combinations (thus, this is another type of error message; cf 2.4 above)

SYMBOL 183 \f "Symbol" \s 10 \h
blinking cursor - eg, when typing pseudocode directly into the pseudocode editor; this lets users know where on the virtual page they are about type

SYMBOL 183 \f "Symbol" \s 10 \h
colour - eg, non-active menu options and the title bars of non-active windows are "greyed-out"

SYMBOL 183 \f "Symbol" \s 10 \h
reverse video - eg, to indicate fill-in fields, and for highlighted text in the pseudocode editor

SYMBOL 183 \f "Symbol" \s 10 \h
boxing - eg, used for grouping, both in menus (see figure 2.2 on page 5) and dialog areas (see figure 2.3 on page 10), and to establish prominence for error and warning messages (see figures 2.4 and 2.5 on pages 9 and 10)

SYMBOL 183 \f "Symbol" \s 10 \h
size, font, and underlining - eg, boldness on the main menu items and weak, wiry fonts on the status bar (figure 2.3 on page 6). Menus also have one letter underlined to indicate keyboard selection

SYMBOL 183 \f "Symbol" \s 10 \h
blank, or "grey" space - eg, used for aiding readability of the main menu bars and for ordering fields on the dialog area into a visually appealing whole (see 1.2.3)

4.3
Colour

Colour plays a role in "visual appeal" (eg, see 1.2 above), while diagram colours are fully user-configurable. Colour also denotes functionality. The pseudocode editor, for example, allows users to identify the different functions of elements in the code by assigning different colours to "invalid and deleted calls and references to distinguish between them" (from the Pseudocode Editor help topic).

4.4
Consistency

4.4.1
Overall, each type of screen is consistent - ie, buttons appear in the same place and in the same order. However, forms and tools look and behave differently. Figure 2.6 shows the tabbed dialog area for the SE/Server Builder Options Tool.
Figure 2.6

Tabbed dialog area for the SE/Server Builder Options Tool

4.4.2
The first thing to note is that this dialog area has no menu bar; the main window (top left) is the first level of interaction, and only by selecting Options, Generation can users open this dialog. This is inconsistent with the forms layout. Secondly, these dialog areas have a row of buttons across the bottom, which forms' dialog areas do not. This is, apparently, something which benefits the developers, but the differences can cause confusion for the users.

4.5
Windows' Management

4.5.1
Using windows is an activity related to the computer domain, and as such, distracts from the main task [40, p337]. The goal of designers, therefore, is to keep this "window housekeeping" to a minimum. One strategy is to design effective "affordances" [33, pp81-2]. As a Windows application, the LBMS software uses the following standard features:

SYMBOL 183 \f "Symbol" \s 10 \h
scroll bars - these encourage the user to click the arrows and so move up or down the document

SYMBOL 183 \f "Symbol" \s 10 \h
window management buttons located in the top right and left hand corners of the window - these minimize and maximize the window size, and close or switch applications, but learning their behaviour depends on experience or being told: they are not at all obvious, or "intuitive"

4.5.2
For the LBMS software, specifically, the system would benefit from some kind of "navigator" facility to keep track of the many screens that users can, and sometimes, must have open (cf the points I made in 1.1.4 above). I understand this is planned for a future release.

5
Redesigns: Some Ideas

5.1
HCI is more about behaviour and communication than screen aesthetics. Hence:

SYMBOL 183 \f "Symbol" \s 10 \h
to improve communication, introduce Tooltips into the interface

These are Microsoft's version of Apple's "balloon help". Farkas describes them as "interface annotations", which take the place of introductions and conceptual overviews, encouraging quick-access and exploration of the software [13, p7]. They are perhaps, more strictly speaking, part of the user support system rather than the software itself, but such subtleties of definition are lost on a user simply wanting to use the tool as a whole.

SYMBOL 183 \f "Symbol" \s 10 \h
to improve predictability, remove an unnecessary step in accessing the RI Trigger Creation tab in the SE/Server Builder Options Tool from the RI Trigger Creation Tool.

Figure 2.6 illustrates this tab and the main window (top left). This main window serves no purpose, and it would be better for users to arrive directly at this tab when they select that option in the RI Trigger Create Tool.

6
Summary

SYMBOL 183 \f "Symbol" \s 10 \h
SE/SB uses the Windows shell and so inherits the best and worse features of Windows (eg, menus and direct manipulation versus arcane windows management buttons)

SYMBOL 183 \f "Symbol" \s 10 \h
SE/SB combines fill-in dialog boxes and menus as the main methods of entering and manipulating data

SYMBOL 183 \f "Symbol" \s 10 \h
SE/SB offers a rich array of messages, but, strangely, does not provide feedback for all user operations

SYMBOL 183 \f "Symbol" \s 10 \h
SE/SB's screens are consistent within each type of facility, but there are differences between the forms' and tools' dialog areas, which can be confusing. These dialog areas are, however, an effective screen design metaphor for the target users

SYMBOL 183 \f "Symbol" \s 10 \h
SE/SB is difficult to navigate, with a web like menu structure that seems to go to infinite depth

4
14

